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Abstract: We show that hidden-sector dark matter is a generic feature of the type IIB

string theory landscape and that its lifetime may allow for a discovery through the observa-

tion of very energetic γ-rays produced in the decay. Throats or, equivalently, conformally

sequestered hidden sectors are common in flux compactifications and the energy deposited

in these sectors can be calculated if the reheating temperature of the standard model sector

is known. Assuming that throats with various warp factors are available in the compact

manifold, we determine which throats maximize the late-time abundance of sequestered

dark matter. For such throats, this abundance agrees with cosmological data if the stan-

dard model reheating temperature was 1010−1011 GeV. In two distinct scenarios, the mass

of dark matter particles, i.e. the IR scale of the throat, is either around 105 GeV or around

1010 GeV. The lifetime and the decay channels of our dark matter candidates depend cru-

cially on the fact that the Klebanov-Strassler throat is supersymmetric. Furthermore, the

details of supersymmetry breaking both in the throat and in the visible sector play an

essential role. We identify a number of scenarios where this type of dark matter can be

discovered via γ-ray observations.
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1. Introduction

Dark matter is frequently assumed to consist of massive weakly interacting particles which

are stable (or have a very long lifetime) because their decay is forbidden by some (ap-

proximate) symmetry. However, it is also well-known that dark matter may originate in a

hidden sector which is coupled to the standard model only via higher-dimension operators,

ensuring that dark matter does not decay (see e.g. [1, 2]).

We demonstrate that the latter scenario is realized under fairly general assumptions

in the type IIB string theory landscape. The main starting point is the well-known fact

that type IIB flux compactifications generically contain many strongly warped regions or

throats [3]. This statement can be made quantitative [4] under the assumption that the

fine-tuning of the cosmological constant requires manifolds with many 3-cycles and that,

in many cases, such 3-cycles produce Klebanov-Strassler throats [5] if stabilized at small

volume. We base our analysis on the fact that, after inflation ends, the standard model

sector is heated to a certain temperature. Moreover, we assume that the throats have

received no energy from the reheating process.1 Even under such minimal assumptions,

1Alternatively, if this assumption is not fulfilled, i.e. if the throats are heated directly by the reheating

mechanism, a lower reheating temperature would be sufficient for our scenario.
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a certain amount of energy is deposited in the various throats by energy transfer from

the heated standard model sector. There exist certain optimal throat lengths (i.e. optimal

warp factors) for which a given throat contains a maximal amount of cold dark matter in

the late universe. Requiring furthermore that such an ‘optimal’ throat is responsible for

the dark matter observed today, we determine the reheating temperature to be between

1010 GeV and 1011 GeV. The IR scale of the relevant throat (i.e. the mass of dark matter

particles) is either around 105 GeV or around 1010 GeV. Moreover, we observe that the

decay rate of throat dark matter to the standard model sector is not negligible. It may, for

a certain range of parameters, lead to the discovery of this variant of dark matter via the

observation of the diffuse γ-ray background or the spectrum of very energetic γ-rays.

The fact that dark matter can come from a hidden (or more precisely conformally

sequestered) sector realized by a Klebanov-Strassler throat has already been emphasized

in [6]. This paper focuses on scenarios where a Klebanov-Strassler throat is heated by the

annihilation of a brane with an antibrane at the end of inflation. Subsequently, energy

is transferred from this throat to other throats which may be present in the compact

manifold. Throat-localized Kaluza-Klein (KK) modes, which are produced in this way, can

be the observed dark matter if they are sufficiently long-lived and if certain parameters

which determine their relic density are tuned. More precisely, three types of dark matter

candidates are discussed in [6]: Kaluza-Klein modes which are localized in the throat

where inflation took place and those localized in the throat where the standard model lives

have to carry an (approximately) conserved angular momentum in the throat in order to

be sufficiently stable. Kaluza-Klein modes which are localized in other throats may, by

contrast, be long-lived also without such an angular momentum.2

We approach the possibility of throat dark matter from a different and, to a certain

extent, more general perspective: We do not assume reheating to be due to brane-antibrane

annihilation in a warped region. Instead, we only rely on the fact that the standard model

(which is realized in the unwarped part of the manifold) has a certain reheating temperature

after inflation ends. In our approach, throats are not a ‘model building feature’ introduced

to realize inflation, uplifting, etc. Instead, we view the presence of (a potentially large

number of) throats as a prediction of the type IIB string theory landscape. Accordingly, we

consider scenarios in which various throats are present and perform a quantitative analysis

of the energy density in these throats in the late universe. We attempt to avoid any other

specific assumptions, relying only on the known fact that the standard model has a certain

initial temperature in early cosmology. The resulting dark matter can then be viewed as

a generic prediction of the type IIB landscape. It turns out that, given a reasonably large

number of throats, the reheating temperature is the only parameter which has to be tuned

to account for the observed dark matter density. We show quantitatively, using results

from [4], that sufficiently many throats are available in an important fraction of vacua of

the type IIB landscape.

We focus in particular on the phenomenological importance of fermionic KK modes

in the throat. To the best of our knowledge, this point has so far not received sufficient

2In addition, [6] also discusses particles on D-branes in these throats as a dark matter candidate.
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attention in the literature. The Klebanov-Strassler throat has N = 1 supersymmetry.

Generically, this supersymmetry is weakly broken by the compact space to which the

throat is attached and in which supersymmetry has to be broken for phenomenological

reasons. Therefore, light fermionic KK modes are guaranteed to be present in the spec-

trum. They turn out to play a central role in the phenomenology of sequestered dark

matter. Furthermore, we use our new values for the energy transfer rates and the decay

rates between throats [7]. For temperatures and Kaluza-Klein masses smaller than the

compactification scale, our rates differ from the values used in [6]. We restrict our analysis

to this case, which can also be characterized as the case of ‘overlapping potentials’ in the

quantum mechanical language of tunneling [7]. Our reasons for focusing on this parameter

range are as follows: On the one hand, a large compactification scale is required to make

the KK modes sufficiently stable against decay to the standard model or other throats.3

On the other hand, temperatures above the compactification scale would imply that also

the unwarped part of the manifold is heated up. The resulting gas of KK modes in the

compact space may then destabilize the volume modulus, making the analysis of the early

cosmological evolution much more difficult.

Our paper is organized as follows: section 2 describes the thermal production of se-

questered dark matter. Using the energy transfer rates from [7], we determine the energy

density deposited in a throat by the heated standard model sector. We show that the

KK modes which are produced in that way thermalize for a certain range of parameters.

Whether this happens or not influences the further time evolution of the energy density

significantly. Taking this into account, we calculate the late-time abundance of KK modes

as a function of the reheating temperature and the IR scale of the throat. In section 3, we

discuss various decay channels of the KK modes. We show that they decay very quickly

to a scalar state and its fermionic superpartner. These lightest KK modes can then decay

to the standard model sector. We determine the corresponding decay rates which turn

out to be different for the scalar and the fermion. Cosmological scenarios are discussed in

section 4. First, we analyse setups with a single throat. We find that a moderately long

throat gives a promising dark matter candidate which may allow for a discovery by upcom-

ing γ-ray experiments. Then, we consider scenarios with a large number of throats, using

results on the distribution of multi-throat configurations from [4]. We find that a throat

of the required length is in many cases present. Some issues concerning supersymmetry

breaking in the throat sector are discussed in section 5. Finally, in section 6, we give a

summary of our results.

2. Thermal production

2.1 Energy transfer

As outlined in the Introduction, we assume the throats to have received no energy from the

reheating process, whereas the standard model is heated to a temperature TRH initially.

3An exception is the decay rate of fermionic KK modes to the standard model sector which can be made

small even for small compactification scales (cf. section 3.2).
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Subsequently, energy will be transferred from the standard model to the throats. Note that

this process is similar to the energy transfer from the hot brane to the bulk in Randall-

Sundrum II models [8] (see also [9]). The AdS5 bulk plays the role of the throat, which we

however assume to be of finite length, with the Klebanov-Strassler region corresponding to

the IR brane.

In [7], we have estimated the energy transfer rate between a heated Klebanov-Strassler

(KS) throat at temperature T and another throat in a type IIB flux compactification.

Our estimate is based on a calculation which can be performed in a simpler setting: two

AdS5×S5 throats embedded in a 6d torus. For the purpose of this analysis, we have replaced

the throats by equivalent stacks of D3-branes. In this language, the aforementioned energy

transfer is that from a heated gauge theory living on one brane stack via supergravity fields

in the embedding torus to the gauge theory living on the other brane stack. The coupling

of supergravity in the torus to the gauge theories on the two brane stacks follows from the

DBI action. Performing a KK expansion of the supergravity fields, the calculation of the

energy transfer rate becomes a simple exercise in quantum field theory. One finds

ρ̇ ∼ N2
1N

2
2

M16
10A

8
T 13 +

N2
1N

2
2

M16
10L

12
T 9, (2.1)

where M10 is the 10d Planck scale, A is the distance between the two brane stacks/throats

and L is the size of the embedding torus. Moreover, N1 and N2 are the numbers of branes of

the two stacks. The world-volume theories then have ∼ N2
1 and ∼ N2

2 degrees of freedom,

respectively.

This energy transfer rate is also applicable to our setup. To this end, instead of a

heated throat, we consider some D3- and/or D7-brane-realization of the standard model

(with g ∼ 100 degrees of freedom). We assume these D-branes to live in the unwarped part

of the manifold (and not in a throat). To account for the standard model, we simply have

to set N2
1 = g in eq. (2.1). Moreover, instead of an AdS5×S5 throat we are interested in

energy transfer to a KS throat. The equivalent description is that of a stack of D3- and

fractional D3-branes at a conifold singularity. For the absorption process, the relevant part

of the geometry is the UV end of the throat, which is well approximated by AdS5×T1,1.

This in turn is equivalent to a large number of D3-branes at a conifold singularity, which

we denote by NUV since it corresponds to the number of 5-form flux at the UV end of

the KS throat. Therefore, N2 = NUV in eq. (2.1). We assume that the temperature of

the standard model is smaller than the compactification scale, i.e. T < L−1. Moreover,

we consider the generic situation that the distance between the two brane stacks is of the

same order of magnitude as the size of the embedding manifold, i.e. A ∼ L. In this case,

the second term in eq. (2.1) dominates.4

As explained in [7], this term is due to the effect of the zero mode in the KK expansion

of supergravity fields and is therefore completely insensitive to the unknown details of the

Calabi-Yau geometry. In [7], we focused on the dilaton, which is one of the supergravity

fields mediating the energy transfer. However, using the coupling of the 10d graviton to the

4All subsequent results are easily extended to the case of nearby throats by simply using the first instead

of the second term in eq. (2.1) and performing an analogous modification of the dark matter decay rates.
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energy-momentum tensors on the two brane stacks, eq. (2.1) can also be derived on the basis

of the graviton as the mediating field. Since the zero mode of the dilaton acquires a mass

in flux compactifications à la GKP [10], its effect is suppressed in this case. We therefore

focus on the graviton zero mode as the field responsible for the second term in eq. (2.1).

Using the relation M4 ∼M4
10L

3 for the 4d Planck scale, the energy transfer rate is

given by

ρ̇ ∼ g N2
UV

T 9

M4
4

. (2.2)

This rate is easily understood as being due to a gravitational strength coupling between a

sector with g degrees of freedom (the standard model) and a sector with N2
UV degrees of

freedom (the KS throat).

The finite length of the KS throat implies the existence of an IR scale mIR, the mass

of the lowest-lying KK mode in the throat. In the dual picture, this corresponds to the

fact that the fractional D3-branes break conformal invariance and induce a confinement or

IR scale mIR in the gauge theory. Thus, KK modes in the throat (i.e. glueballs of the dual

gauge theory) can only be created if TRH > mIR. We then expect these glueballs to have

masses up to m ∼ TRH.

The glueballs may decay back to the standard model. Jumping somewhat ahead, we

note that spin-2 glueballs have the highest decay rate (see section 3.2 for details):

Γ(m) ∼ g N2
UV

m4mIR

M4
4

. (2.3)

On the other hand, glueballs can also decay to lighter glueballs within the same throat.

We will have to discuss this process in some detail below. At the moment, it is sufficient

to establish that the decay to lighter glueballs wins over the possible decay back to the

standard model. For this purpose, we recall that we are dealing with a strongly coupled

system with a dense spectrum. Thus, the initially created gauge theory state of mass m

will have a lifetime ∼ 1/m. In the most conservative scenario, it will decay to 2 states of

mass m/2. These states will in turn decay to states of mass m/22 after a time-interval

∼ 2/m, and so on. Summing up the probabilities for the decay back to the standard model

at each step of this cascade, we arrive at a total probability

w ∼
∑

n=0

Γ(m/2n) · 2n

m
. (2.4)

This sum is of the same order of magnitude as the first term and hence very small in all

cases of interest. Clearly, we could equally well have assumed that each glueball decays to

k1 lighter states with mass m/k2, arriving at the same conclusion for any O(1) numbers

k1 and k2. Thus, the relaxation to lighter states within the same throat always wins over

the decay back to the standard model or to other throats.

The energy transfer rate eq. (2.2) is strongly temperature dependent, ρ̇ ∝ T 9. There-

fore, energy transfer is effectively finished soon after reheating and the corresponding time

scale is |T/Ṫ | at T = TRH. The total energy density after reheating is dominated by the

– 5 –
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relativistic gas in the standard model sector with ρ = g π2

30
T 4. We find

|T/Ṫ | = H−1 ∼ M4

g1/2T 2
, (2.5)

where H is the Hubble rate. Using eqs. (2.2) and (2.5) at T ∼ TRH, the energy density

deposited in a throat directly after reheating is

ρ ∼ ρ̇ |T/Ṫ | ∼ g1/2N2
UV

T 7
RH

M3
4

. (2.6)

Before closing this section, we note that the energy transfer processes we consider

compete with the unavoidable energy deposition in the throat sectors occurring during

inflation. This can be understood by noting that de Sitter space has a temperature TdS ∼
1/RdS ∼ M2

Inf/M4. We assume that inflation lasts long enough for the throats to be

thermalized with this temperature. Furthermore, parameterizing the efficiency of reheating

by an efficiency factor ǫ ≤ 1, we have gT 4
RH ∼ ǫM4

Inf . Thus, all throats have a temperature

TdS ∼
√

g/ǫ T 2
RH/M4 at the time of reheating. Jumping ahead, we note that for typical long

throats (where this effect is most relevant), we find initial throat temperatures ∼ 106 GeV

and TRH ∼ 1011 GeV. For such throats, ‘de-Sitter heating’ in fact wins over the heating

process analysed in this section if ǫ < 1, allowing in principle for even more throat dark

matter than we find in our conservative analysis.

2.2 Time evolution of the energy density

The gauge theory states created by energy transfer from the standard model sector decay

into a certain number of the lightest glueballs of mass mIR with a certain distribution of

kinetic energies. Two extremal cases are possible. In one case, the initial gauge theory

state decays into an O(1) number of the lightest glueballs which accordingly have kinetic

energies of the order of TRH. In the other case, the initial gauge theory state settles into

a large number of the lightest glueballs with kinetic energies of the order of their mass

mIR. In between these two extremal cases, a continuous distribution of kinetic energies is a

priori possible. The knowledge of this distribution is important since it determines whether

the glueballs can reach thermal equilibrium after reheating and whether (or for how long)

the energy density scales like radiation or like matter with the expansion of the universe.

This in turn determines how large the contribution of the glueballs to the total energy

density is at our epoch. Since we are at present unable to determine this distribution of

kinetic energies, we discuss the two extremal cases separately. This allows us to estimate

the possible range of contributions of the glueballs to the current energy density of the

universe as a function of the parameters mIR, NUV and TRH.

We begin by collecting some results from the literature on the thermodynamics of

the gauge theories that are relevant for our discussion. The gauge theory dual to a KS

throat has a logarithmically varying number of degrees of freedom, corresponding to the

logarithmic deviation of the KS geometry from AdS5. In the deconfined phase, the effective

number of colours Neff of the gauge theory depends on the temperature T̃ of the plasma as

Neff ∼ NIR ln

(

T̃

mIR

)

. (2.7)
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Here, NIR is the number of 5-form flux at the bottom of the throat. The deconfined phase

of the gauge theory is dual to a throat with a black hole horizon which replaces the IR

end. The highest meaningful value in eq. (2.7) is Neff ∼ NUV. This corresponds to a

temperature where the black hole horizon reaches the UV end of the throat. The energy

density as a function of the plasma temperature T̃ is

ρ ∼ N2
eff T̃

4. (2.8)

Since the logarithmic variation of Neff with T̃ is small compared to the variation of the

T̃ 4-term, we will neglect it in the following. The deconfined phase can then be described by

an approximate conformal field theory and the energy density correspondingly scales like

radiation with a−4, where a is the scale factor of the universe. When the energy density

drops to ρ ∼ N2
IRm

4
IR, a confinement phase transition begins which lasts until the energy

density has reached ρ ∼ gsNIRm
4
IR (see e.g. appendix A in [11]; the phase transition in the

dual gravity picture was studied in [12] using a 5d picture and in [13] using the full KS

geometry). In the transition region for ρ, space is divided into separate regions in either

the confined phase with ρ < gsNIRm
4
IR or the (still) deconfined phase with ρ > N2

IRm
4
IR.

At even lower energy densities ρ < m4
IR (assuming gsNIR > 1), a description in terms of a

nonrelativistic glueball gas is applicable and the energy density correspondingly scales with

a−3. We do not know the scaling of ρ with a in the transition region N2
IRm

4
IR > ρ > m4

IR

though, since the equation of state during the phase transition is unknown. Since we expect

the scaling to be in between the two extremes ρ ∝ a−3 and ρ ∝ a−4 in this region, we will

take ρ ∝ a−4 for ρ > NIRm
4
IR and ρ ∝ a−3 for ρ < NIRm

4
IR for simplicity.5

Let us first consider the case that the energy density deposited in a throat, eq. (2.6),

is larger than ρ ∼ NIRm
4
IR. If the gauge theory state created at reheating decays into

a large number of glueballs with mass and kinetic energy of the order of mIR, the gauge

theory thermalizes. To see this in more detail, we view each initially created glueball as

a localized excitation of a strongly coupled system with energy ∼ TRH. The localization

assumption can be justified by recalling that, from the D-brane perspective, the mediating

bulk supergravity fields couple to local gauge theory operators like FµνF
µν . We model the

further evolution of this state as a ball of gauge theory plasma expanding with the velocity

of light.6 The number density of these balls is

n ∼ ρ

TRH

∼ g1/2N2
UV

T 6
RH

M3
4

, (2.9)

where we have used eq. (2.6). It follows that the balls fill out the whole space after a time

t ∼ n−1/3 ∼ M4

g1/6N
2/3

UV T 2
RH

. (2.10)

5Using the intermediate value ρ ∼ NIRm
4

IR for the distinction between the two behaviours, the error

in ρ is a factor of (NIRm
4

IR/N
2

IRm
4

IR)1/4 = N
−1/4

IR
if ρ ∝ a−3 in the entire transition region or a factor of

(NIRm
4

IR/m
4

IR)1/3 = N
1/3

IR
if ρ ∝ a−4 in the entire transition region. In both cases, this factor is typically

O(1).
6Note that this physical picture is equivalent to the picture of a cascade decay used in the derivation of

eq. (2.4) if we assume that a glueball with mass m/2n fills out a volume (2n/m)3.

– 7 –
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m · η

mIR

mIR,cr TRH

Figure 1: Schematic plot of m · η as a function of the IR scale mIR of the throat. Here, mIR,cr is

the IR scale for which Tpt ∼ TRH, i.e., for which the throat is heated precisely to its phase transition

temperature. See text for more details.

Comparing this with the Hubble time eq. (2.5) at T = TRH, we see that the gauge theory

plasma fills out the whole space before the Hubble expansion becomes relevant if N2
UV & g,

which holds for all relevant throats.

The question of thermalization is more subtle if the gauge theory state produced at

reheating decays into an O(1) number of the lightest glueballs with kinetic energies of

the order of TRH. We defer the corresponding discussion to section 2.3. It turns out

that in the cases of interest the glueballs again thermalize if the initial energy density is

larger than ρ ∼ NIRm
4
IR. Furthermore, the initial decay vertex is strong enough to ensure

that the potential energy ∼ m is transformed to the kinetic energy of the decay products

instantaneously on the Hubble time scale.

Thus, we have found that in both extreme cases the energy density in the throat

initially scales like radiation if it is above the phase transition density. It is given by

ρ ∼ g1/2N2
UV

(

TRH

M4

)3

T 4 , (2.11)

where T is the standard model temperature. We assume the scaling behaviour to change

when the energy density has dropped to ρ ∼ NIRm
4
IR. This happens when the standard

model has a temperature

Tpt ∼ mIR

N
1/4

IR

N
1/2

UV

(

M4

TRH

)3/4

, (2.12)

where we have neglected a factor of g1/8 which is close to 1. The energy density scales like

matter afterwards and the ratio of energy density and entropy density, ρ/s = m · η, stays

constant. Here η = n/s is the glueball number density normalized by the entropy density.

Using eq. (2.11) and s = g 2π2

45
T 3 (dominated by the standard model sector) at T = Tpt, we

– 8 –
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find the glueball mass density per entropy density

m · η ∼ N2
UV

g1/2

(

TRH

M4

)3

Tpt. (2.13)

The factor of Tpt is smaller than or equal to TRH and reflects the fact that the corresponding

energy density undergoes a phase of a−4 dilution. The quantity m · η is useful because it

determines the contribution of the glueballs to the total energy density in the late universe.

We have plotted m·η as a function of mIR schematically in figure 1. The part corresponding

to eq. (2.13) is the straight bold line which grows linearly7 with the IR scale from mIR = 0

up to an mIR such that Tpt in eq. (2.12) is of the same order of magnitude as TRH. This is

the maximal IR scale for which eq. (2.13) is valid because at this point the initial energy

density in the throat, eq. (2.6), is of the same order of magnitude as the critical energy

density ρ ∼ NIRm
4
IR.

Dividing eq. (2.13) by ρc/s0 ≃ 2 · 10−9 GeV, where ρc is the current critical energy

density for a flat universe and s0 is the current entropy density, and using g ∼ 100 as well

as M4 ≃ 2 · 1018 GeV, we have

Ω =
ρ

ρc
∼
(

TRHN
1/2

UV

6 · 1011 GeV

)4
(

Tpt

TRH

)

. (2.14)

This is the contribution of the throat sector to the density parameter. The second factor is

smaller than or equal to 1 and again reflects the fact that the corresponding energy density

undergoes a phase of a−4 dilution.

Let us now consider the case that the energy density deposited in a throat, eq. (2.6),

is smaller than ρ ∼ NIRm
4
IR. If the initial gauge theory state settles into a large number

of slow glueballs, the energy density scales like matter from the beginning. Taking this

scaling into account, the mass density over entropy density m · η is given by eq. (2.13)

with Tpt replaced by TRH. Similarly, the contribution of the throat sector to the density

parameter Ω is given by eq. (2.14) with the second factor in brackets replaced by 1. As a

function of mIR, m · η is constant in this case, which we have plotted as the bold dashed

line in figure 1.

The analysis is more subtle if the initial gauge theory state decays into an O(1) number

of fast glueballs. The important question is again whether the glueballs thermalize because

this determines the distribution of kinetic energies directly after reheating. As we will see in

section 2.3, in the cases of interest the glueballs do not thermalize if the initial energy den-

sity is smaller than ρ ∼ NIRm
4
IR. Since the glueballs are thus ultrarelativistic initially with

kinetic energies of the order of TRH, the energy density scales like radiation until the glue-

balls become nonrelativistic. Taking this into account, the contribution of the throat sector

to the total energy density is determined by eqs. (2.13) and (2.14) with Tpt replaced by mIR.

We have plotted m · η as a function of mIR for this case as the thin dashed line in figure 1.

7Note that this plot has to be read either at fixed NUV, in which case NIR must be interpreted as function

of NUV and mIR, or at fixed NIR, in which case NUV must be interpreted as function of NIR and mIR. In

both cases an extra logarithmic dependence of m · η on mIR is introduced, which we however neglect.

– 9 –
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Finally, throats with mIR > TRH are not heated for kinematic reasons. Therefore, the

mass density over entropy density m · η is zero in this region, which we have plotted as a

bold straight line in figure 1. Now, the bold straight lines in figure 1 correspond to regions

where the function is the same in both extremal cases. We therefore expect that, in these

regions, the plotted function gives the true behaviour also in intermediate cases (e.g. the

decay of the initial gauge theory state into a large number of glueballs with a complicated

distribution of kinetic energies). The thin dashed lines corresponds to the decay into a

small number of highly-energetic glueballs whereas the bold dashed line corresponds to the

decay into a large number of slow glueballs. We expect the true behaviour in this region

to be in between these two extremes. We have plotted our expectation schematically as

the thin curve.

2.3 Subtleties with thermalization

In this section, we consider the question of thermalization for the case that the initial gauge

theory state decays into an O(1) number of highly-energetic glueballs. Let us assume that

this decay is fast8 compared to the Hubble time scale eq. (2.5). The number density of the

decay products is then given by eq. (2.9) directly after reheating. If n 〈σv〉 > H, where

〈σv〉 is the thermally averaged product of interaction cross section σ and velocity v, the

glueballs thermalize. Since the glueballs have high energies E ∼ TRH ≫ mIR, their velocity

v is close to 1. For energies

E ≫ N2
IRmIR, (2.15)

the scattering cross section of KK modes in a throat or, equivalently, of glueballs in the

dual gauge theory fulfills the Froissart bound and is given by [14]

σ ∼ m−2
IR ln2

(

E

mIR

)

. (2.16)

The glueball number density eq. (2.9) scales as n ∝ a−3. During radiation domination,

a ∝ T−1. Therefore, n ∝ T 3 as a function of the standard model temperature T . Since the

Hubble rate eq. (2.5) only scales as H ∝ T 2, the criterion for thermalization9 is easiest to

fulfill directly after reheating at T ∼ TRH. Neglecting the logarithm in eq. (2.16), we find

mIR . NUV

T 2
RH

M4

(2.17)

as a criterion for thermalization of a given throat sector with IR scale mIR.

In section 2.2, we have assumed that the glueballs thermalize if and only if the initial

energy density in the throat, eq. (2.6), is larger than or of the same order of magnitude as

8As already mentioned, the process corresponding to the primary vertex is always fast since we are

dealing with a strongly coupled system. However, similarly to QCD processes with final state jets, the

hadronization time scale may be much slower. Thus, strictly speaking, we should derive the thermalization

criterion taking into account the evolution of the decay products into glueballs. Since we are only interested

in order-of-magnitude estimates, we neglect these subtleties in the following.
9The dependence of 〈σv〉 on T via the glueball energy E is only logarithmic in the energy range of

interest according to eq. (2.16).
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the critical energy density ρ ∼ NIRm
4
IR. Using eq. (2.6), this criterion can be written as

mIR .

(

g−1/2 NIRN
2
UV

TRH

M4

)−1/4

NUV

T 2
RH

M4

. (2.18)

As we will discuss in section 4.1, NUV can vary in the range 10 . NUV . 104. It then

follows from eq. (2.14) that the reheating temperature has to be between 1010 GeV and

1011 GeV if throat dark matter is not to be negligible today. Given the numerically large

prefactor g−1/2NIRN
2
UV in eq. (2.18) and the exponent 1/4, it turns out that the criteria

in eqs. (2.17) and (2.18) are roughly equivalent. This justifies our previous simplifying

assumption that a throat thermalizes if and only if the energy deposited in it is higher

than its critical energy density.

Finally, let us discuss throat sectors which thermalize according to eq. (2.17) in more

detail. The high-energy scattering cross section of KK modes in eq. (2.16) is dominated

by the production of black holes localized near the IR end of the throat [14]. In the gauge

theory, these black holes correspond to so-called plasma-balls, localized lumps of gauge

theory plasma above the critical temperature, which are classically stable [11]. We expect

the thermalization to proceed as follows: Two glueballs incident with an impact parameter

smaller than
√
σ at high energy will produce a plasma-ball. Other glueballs will be absorbed

by the plasma-ball [11] and different plasma-balls will merge into larger plasma-balls. If

the energy density is large enough for the gauge theory to be in the deconfined phase, this

process continues until the gauge theory plasma fills out the whole space. On the gravity

side this corresponds to the growing of the black hole horizon until it completely replaces

the IR end of the throat. Otherwise, if the energy density is such that the equilibrated

gauge theory is in the confined phase, the plasma-balls hadronize again until the whole

space is filled by a nonrelativistic glueball gas.

3. Relics in a throat

3.1 Processes in the hidden sector

After a confinement phase transition, glueballs with mass of the order of the confinement

scale and with different spin are formed. Similarly, if the gauge theory does not thermal-

ize, the initial gauge theory states created at reheating settle into a certain number of

light glueballs. A number of papers [15 – 23] have calculated parts of the bosonic glueball

spectrum of the KS gauge theory. In [21], masses of KK towers of 7 coupled scalar fields

and the graviton polarized parallel to the uncompactified dimensions were determined. In

particular, several scalar states lighter than the lowest spin-2 state were found. Their nu-

merical technique, however, does not reveal to which linear combinations of the 7 scalar

fields these masses belong. In [16], the mass of the lowest KK mode of the dilaton was

calculated using some approximations in the geometry. Again, it was found to be lighter

than a spin-1 and a spin-2 state [16, 17], but no other scalar states were calculated to

compare with. In the light of these findings, we expect the lightest state in the bosonic

sector to be a scalar glueball. We do not know, however, to which field fluctuations on the

gravity side of the duality this glueball corresponds.
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The KS gauge theory has N = 1 supersymmetry and the lightest scalar glueball has a

spin-1
2

superpartner. In a phenomenologically viable setup, supersymmetry is broken and

the masses of the scalar and the spin-1
2

glueball are no longer degenerate. We have not

completely settled the important question of the size of the mass splitting and which of the

two superpartners is lighter. In the following, we will mainly be interested in scenarios with

high-scale SUSY breaking. As we discuss in section 5, we expect that the spin-1
2

glueball

is lighter than its scalar superpartner in this case. Nevertheless, we keep the discussion as

general as possible and allow for the two possibilities that the fermion is lighter or heavier

than the scalar.10

Generically, the glueball effective theory includes various cubic interactions. For ex-

ample, for a scalar glueball G, a spin-1 glueball Aµ and a spin-2 glueball Hµν , there are

couplings of the type

∂µG Aν Hµν +mIR AµAµ G +m−1
IR ∂µG ∂νG Hµν + . . . . (3.1)

The coupling strengths follow on dimensional grounds up to possible factors of NIR that

we have not determined. Also, there may be more partial derivatives involved or they may

act differently. Due to interactions of this type, heavy glueballs decay quickly to a few light

states which cannot decay further for kinematic reasons. Note, however, that the KS gauge

theory has a global SU(2)×SU(2) symmetry which forbids certain couplings of the type of

eq. (3.1). From the dual gravity point of view, this symmetry corresponds to an isometry

of the KS throat. In a compactified setup, the KS throat is attached to a Calabi-Yau

manifold which breaks this isometry in the UV. This symmetry breaking is mediated to

the IR as discussed in [24 – 26]. We therefore expect that couplings of the type of eq. (3.1),

which violate the global symmetry, are nevertheless present, albeit with a possibly smaller

coupling strength. In the following, we ignore the effects of glueballs charged under the

SU(2)× SU(2) symmetry. In particular, we expect that the lightest scalar glueball and its

superpartner are singlets with respect to this symmetry.

If the gauge theory has thermalized, the glueballs which can not decay interact with

each other for a certain period of time after the confinement phase transition. This leads to

a significant reduction of the abundances of all the states heavier than the lightest glueball,

including its superpartner if the mass splitting from supersymmetry breaking is not too

small. We now analyse this effect in some detail:

For simplicity, we focus on only two glueball species. Generically, the glueball effective

action includes couplings of the type

HHGG, (3.2)

where H and G are the heavy and light glueball respectively, and all Lorentz- and/or spinor-

indices are appropriately contracted. By assumption, the masses of the two glueball species

10It may happen that the lightest fermionic glueball is not the superpartner of the lightest bosonic

glueball. The following discussion then stays correct if one replaces the spin- 1

2
superpartner by this lightest

fermionic glueball. Moreover, it may happen that the mass of the lightest bosonic glueball is larger than

twice the mass of the lightest fermionic glueball. The former could then decay to the latter via couplings

discussed below. We will not consider this possibility in the following.
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hµν

G

Hµν

B

Figure 2: Decay of a bosonic glueball B into a scalar glueball G and a graviton hµν via a spin-2

glueball Hµν .

satisfy mG < mH. As long as the two glueball species are in equilibrium, the density nH of

the heavy glueballs is suppressed relative to the light glueball density nG by an exponential

factor exp[−(mH − mG)/T̃ ] after the temperature T̃ of the glueball gas falls below mIR.

This exponential decrease of the number density of H glueballs continues until they are so

dilute that they decouple. This happens, when

nH · 〈σv〉 ∼ H. (3.3)

Here 〈σv〉 is the thermally averaged product of cross section and relative velocity for the

2 · H ↔ 2 · G process, which evaluates to [27]11

〈σv〉 ∼ m−2
IR . (3.4)

Since nH drops exponentially after the temperature T̃ falls below mIR, the heavy

glueballs decouple when the temperature of the glueball gas is still of the same order of

magnitude as the IR scale. We can therefore derive the freezeout density of the heavy

glueballs from eq. (3.3) using the phase-transition Hubble rate H(Tpt). Furthermore, we

can approximate the light glueball density by m3
IR. The ratio of heavy and light glueball

densities directly after freezeout, i.e. the dilution factor, is then given by

nH
nG

∼ H(Tpt)

mIR

∼ g1/2mIRM
1/2
4

NUVT
3/2

RH

. (3.5)

Here we have calculated the Hubble rate according to eqs. (2.5) and (2.12) and disregarded

a small power of NIR. Our formula is valid if the right-hand side is smaller than 1. If,

however, the right-hand side is formally larger than 1, the H glueballs are decoupled from

the beginning and not diluted at all.

At a later time, all bosonic glueballs which are left over from this process decay by

emission of a graviton into the lightest scalar glueball. Namely, as we will discuss in

11If the mass difference mH −mG is very small, this cross-section is kinematically suppressed. This may

happen, for example, for the superpartner of the lightest glueball. These glueballs are then diluted to a

lesser extent.
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hµν

hµν

Hµν

Hµν

G

Figure 3: Decay of a scalar glueball G into two gravitons hµν via spin-2 glueballs Hµν .

section 3.2, spin-2 glueballs mix with the 4d graviton. The corresponding vertex will be

derived in section 3.2 and is given in eq. (3.9). Combined with interactions of the type

given in eq. (3.1), processes such as that shown in figure 2 are possible: A bosonic glueball

B decays to the lightest scalar glueball G and, via a virtual spin-2 glueball Hµν , to the

graviton hµν . Since the mixing between graviton and spin-2 glueball is ∼ NUV/M4 (see

eq. (3.9)) and mIR is the only other relevant dimensionful parameter, we have

Γ ∼ N2
UV

m3
IR

M2
4

(3.6)

for the corresponding decay rate (up to an unknown factor related to NIR which may result

from the three-glueball vertex). Similarly, fermionic glueballs decay to the lightest spin-1
2

glueball and a graviton. The corresponding decay rate is again given by eq. (3.6). In

addition, fermionic glueballs may in principle decay to lighter bosonic glueballs and vice

versa by emission of a gravitino. Indeed, by supersymmetry we expect a mixing of spin-3
2

glueballs with the gravitino, again with the vertex given in eq. (3.9). This would allow

for the corresponding processes. As we have mentioned at the beginning of this section,

we mainly focus on a setup in which the gravitino is very heavy and such decays are

kinematically forbidden. In this case, a non-negligible amount of the superparter of the

lightest glueball is left.

At an even later time, the lightest scalar glueballs decay into two gravitons. Indeed,

using the three-glueball coupling and the vertex in eq. (3.9), the process shown in figure 3

is possible. The corresponding decay rate is

Γ ∼ N4
UV

m5
IR

M4
4

(3.7)

up to an unknown factor depending on NIR. By supersymmetry, we expect that the lightest

spin-1
2

glueballs may decay to a graviton and a gravitino with the same rate. As before, if

the gravitino is very heavy, such decays are kinematically forbidden.

3.2 Decay to the standard model sector

Of the processes described so far, only the decay to two gravitons (or to graviton and

gravitino, if the gravitino is light enough) can be sufficiently slow to be relevant for late
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cosmology. The other processes have a time scale much shorter than the age of the universe

for all relevant choices of parameters. Thus, in late cosmology, the energy density in the

throat sector is completely in the form of the lightest glueball and its superpartner. The

abundance of the heavier superpartner is depleted by the factor in eq. (3.5) if the gauge

theory was thermalized.

The glueballs couple (very weakly) to the standard model and other throats. Therefore,

they may decay to these sectors. In [7], we have calculated the decay rate of a dilaton

between two AdS5×S5 throats embedded in a 6d torus. Again, we chose the dual picture

where the throats are replaced by corresponding brane stacks. The calculation is then

almost identical to the calculation of the energy transfer rate described at the beginning

of section 2. A crucial difference is the fact that the coupling between the glueball on a

brane stack (corresponding to the dilaton in the throat) and the dilaton in the embedding

torus cannot be read off from any Lagrangian since the glueball is a non-perturbative

object. Therefore, in [7], we first used the gravity picture to calculate the decay rate for

the following simplified setup: We considered a single finite throat embedded in flat 10d

space and a dilaton KK mode decaying from the throat to the asymptotically flat region.

Then, we determined the glueball-dilaton vertex from the requirement that the decay

rate be reproduced in the gauge theory picture. Let us restrict ourselves to a glueball

corresponding to an s-wave of the dilaton with respect to the S5 in the throat. The vertex

between the dilaton in the embedding torus and such a glueball on a brane stack is then

given by (cf. eq. (37) of [7])

NUV

m
1/2

IR m5/2

M4
10

, (3.8)

where m is the mass of the glueball (for our purposes m ∼ mIR). Note that eq. (3.8)

gives the vertex in the 10d effective theory. Thus, to be part of a Lagrangian, this vertex

has to be multiplied by a 6d δ-function for the brane stack, the 4d glueball field of mass

dimension 1 and the 10d dilaton field of mass dimension 4. As we have outlined in [7],

eq. (3.8) also works for a KS throat as long as the field corresponding to the glueball

satisfies the equations of motion of a massless 5d scalar.

A simple example is provided by the 10d graviton ĥµν polarized parallel to the uncom-

pactified dimensions which fulfills the equation of motion of a massless, minimally coupled

10d scalar field [28, 18]. It also obeys the equations of motion of a massless scalar in the

5d effective theory of the throat. The vertex between the corresponding glueballs and ĥµν

in the embedding manifold is again given by eq. (3.8). We want to calculate the decay rate

of such glueballs to another brane stack on which the standard model may live or which

may correspond to another throat. This decay is mediated by the tower of KK modes of

ĥµν in the embedding manifold. In analogy to the energy transfer rate of section 2, the

contribution of the zero mode in this KK expansion dominates if the distance A between

the two brane stacks is of the same order of magnitude as the size L of the embedding

manifold.12 Normalizing this zero mode contributes an extra factor of L−3 to the vertex

12More generally, there is again a term with an A−8 dependence in the expression for the decay rate.

This term becomes dominant at small A, see [7].

– 15 –



J
H
E
P
0
5
(
2
0
0
8
)
0
3
1

of eq. (3.8). Using M4 ≃M4
10L

3, the vertex of the 4d effective theory characterizing the

mixing of the spin-2 glueball and the 4d graviton is thus given by

NUV

m
1/2

IR m5/2

M4

. (3.9)

This is similar to the mixing between the photon and the ρ meson known from QCD and

was also observed in [29] for the gauge theory dual of a 5d RS model. Using eq. (3.9) and

the fact that the 4d graviton couples to the energy-momentum tensor on the other brane

stack with strength M−1
4 as well as summing over all degrees of freedom on the other brane

stack, we get

Γ ∼ N2N2
UV

m4mIR

M4
4

. (3.10)

This is the decay rate of a spin-2 glueball (which is a singlet with respect to the R-symmetry

of the gauge theory) to another brane stack.

The vertex eq. (3.9) also applies to the coupling of scalar glueballs to zero modes of

other fields in the embedding manifold. To see this, let us consider the dilaton φ, whose

equation of motion is

∇2φ =
1

12
eφ F̃MNP F̃

MNP − 1

12
e−φHMNPH

MNP . (3.11)

Here, F̃3 = F3 −CH3 and F3 = dC2 and H3 = dB2 are the field strengths of the Ramond-

Ramond 2-form C2 and the Neveu-Schwarz 2-form B2, respectively. Moreover, C is the

Ramond-Ramond scalar, which we have taken to be constant in eq. (3.11). In a background

with imaginary self-dual 3-form flux [10], the flux fulfills

HMNPH
MNP = e2φ F̃MNP F̃

MNP (3.12)

for the background value of φ and the right-hand side of eq. (3.11) vanishes. This is no

longer the case if one shifts the background value of φ while keeping B2 and C2 fixed.

However, if one simultaneously shifts B2 in such a way that eq. (3.12) remains fulfilled, the

right-hand side of eq. (3.11) still vanishes. In other words, there exists a flat direction in the

5d effective theory which one can parameterize, e.g., by the value of the dilaton. The corre-

sponding field then fulfills the equation of motion of a 5d minimally coupled, massless scalar.

A light glueball, i.e. a KK mode localized at the bottom of the throat, will generically mix

with this flat direction in the upper part of the throat [30, 31]. Thus, scalar glueballs couple

to zero modes in the embedding manifold with the previously derived vertex eq. (3.9).

Note also that stronger couplings may arise for glueballs mixing with fields of the 5d

effective theory which have tachyonic mass. The reason is that the 5d profile of such fields

is suppressed more weakly if one moves from the IR to the UV end of the approximate

AdS5 geometry. It may be worthwhile to investigate this effect in more detail in the future.

A crucial difference to the decay of spin-2 glueballs is the fact that the mediating field

is massive if fluxes are present in the compact space containing the two brane stacks [10].
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More specifically, the zero mode of the (axion-)dilaton and the complex structure moduli

get a mass

mτ ∼ M2
10

M4

, (3.13)

where we have assumed that gs ∼ 1. The Kähler moduli can be lighter. We discuss the

possible effects of Kähler moduli in mediating decays in section 5.

Redoing the calculation leading to eq. (3.10) with a massive instead of a massless

propagator for the mediating field, we get an extra factor of

(

m2

m2 −m2
τ

)2

∼
(

m

mτ

)4

(3.14)

for the decay rate of a scalar glueball. In the last step, we have assumed that the dila-

ton (or the complex structure modulus) is heavier than the decaying glueball. In this

case, eq. (3.14) suppresses the decay rate.13 Combining eqs. (3.10) and (3.14) and using

eq. (3.13), we then get

Γ ∼ N2N2
UV

m8mIR

M8
10

(3.15)

for the decay rate of a scalar glueball to another brane stack. In particular, for N2 = g,

eq. (3.15) is the decay rate of scalar glueballs to the standard model.

We have not yet determined the decay rate of the spin-1
2

glueballs. For unbroken

supersymmetry, this rate is related to the scalar decay rate by a supersymmetry transfor-

mation and both rates are thus equal. We expect that even for broken supersymmetry, the

relevant vertices agree up to O(1) prefactors and that the suppression of the spin-1
2

decay

rate by the dilatino propagator is the same as the suppression of the scalar decay rate by

the dilaton propagator. Therefore, we can use eq. (3.15) also for the decay rate of spin-1
2

glueballs to other throats.

The situation is more complicated for decays to the standard model. Namely, we have

assumed that the gravitino is much heavier than the glueballs and, accordingly, that su-

persymmetry is broken at a high scale. This means that also the superpartners of standard

model particles are heavier than the decaying spin-1
2

glueballs. If R-parity is conserved,

most decay channels involve such a superpartner as a final state and the corresponding de-

cays are therefore kinematically forbidden. A coupling that does not involve a superpartner

is

λ l̄ ψ H, (3.16)

where l is a lepton doublet, H is the Higgs doublet and ψ is a dilatino or any other mod-

ulino.14 The coupling strength λ may be O(1) or it may be suppressed as λ = m/M4 where

m is some low mass scale. The coupling in eq. (3.16) probably requires R-parity violation.

Namely, the corresponding coupling containing the modulus instead of the modulino gen-

erates a bilinear R-parity violating term for nonzero modulus vev. But since we assume

13One can check that the contribution of higher KK modes is still smaller than the zero mode contribution

for mτ given in eq. (3.13).
14This coupling was already considered in [32] since it also leads to a mixing between the modulino and

the neutrino.
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high-scale supersymmetry breaking, a large coupling λmay still be allowed. Moreover, even

for maximally broken R-parity, all other decay channels involve standard model superpart-

ners which further decay into standard model particles. The corresponding decay rates are

therefore suppressed by the propagators of the heavy superpartners and are smaller than

the decay rate resulting from eq. (3.16). Therefore, we concentrate on this coupling in the

following. Redoing the steps leading to eq. (3.15) with the vertex of eq. (3.16), we find

Γ ∼ λ2N2
UV

m6mIR

M8
10/M

2
4

(3.17)

for the decay rate of spin-1
2

glueballs to the standard model. If the coupling in eq. (3.16)

is absent and R-parity is exactly conserved, the spin-1
2

glueballs can not decay at all to

the standard model sector. If, in addition, there is no throat with lower IR scale (other-

wise decays to this sector with the rate in eq. (3.15) are possible), the spin-1
2

glueballs are

absolutely stable.

Finally, the gravitino may also play a role in mediating decays of fermionic glueballs.

We will discuss these effects in section 5.

4. Cosmological scenarios

If the glueballs from a given throat are stable until our epoch, then these glueballs are an

interesting dark matter candidate. We begin our discussion in section 4.1 with scenarios

where a single throat accounts for the observed dark matter. Essentially, this gives a

relation for the required reheating temperature as a function of the IR scale of the throat.

In section 4.2 we discuss the probably more natural scenario that various throats of different

lengths are present. As we show, in this case a reheating temperature of 1010 − 1011 GeV

naturally leads to the right dark matter abundance.

4.1 A single throat

We consider a setup in which the compact manifold contains a single throat. In order

to evaluate the relevant equations from sections 2 and 3, we have to fix NIR and NUV.

These numbers determine the warp factor h = exp(2πNUV/3NIR) which in turn is related

to the IR scale mIR ∼ h−1N
−1/4

IR M10 of the throat. To simplify the discussion and to

avoid uncertainties associated with unknown factors of NIR in the various glueball decay

rates, we focus on throats where NIR = O(1). NUV is then a function of mIR and M10.

For our purposes it will be sufficient to use the typical values NUV ∼ 10 for long throats

(e.g. for mIR ∼ 106 GeV and M10 ∼ 1015 GeV) and NUV ∼ 4 for shorter throats (e.g. for

mIR ∼ 1011 GeV).

As we have explained in section 2.2 and as one can see from figure 1, we expect

the glueball mass density over entropy density m · η or, equivalently, the contribution of

glueballs to the density parameter Ω to be maximized for throats with mIR ∼ mIR,cr and

with mIR ∼ TRH. Let us focus on throats with the former IR scale first. This IR scale is

defined by the condition that the initial energy density in the throat, eq. (2.6), is just the
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critical energy density ρ ∼ NIRm
4
IR of that throat. Solving for mIR, we have

mIR,cr ∼
(

N2
UV T

7
RH

NIRM3
4

)1/4

, (4.1)

where we have neglected a factor of g1/8 which is O(1). It follows from eq. (2.12) that

Tpt ∼ TRH for this IR scale. Using NUV ∼ 10 and Tpt ∼ TRH in eq. (2.14), we see that a

reheating temperature of the order of 1011 GeV leads to the right amount of dark matter.

It follows from eq. (4.1) that the mass of this dark matter candidate is

mIR ∼ 106 GeV. (4.2)

If the coupling in eq. (3.16) is present, the spin-1
2

glueballs decay to the standard model

with a rate given by eq. (3.17). The resulting lifetime is

τ ∼ 1026

(

M10 · λ−1/4

2 · 1016 GeV

)8

s. (4.3)

Note that we consider a setup in which the gravitino is heavier than the glueballs. The

decay of spin-1
2

glueballs to a graviton and a gravitino is therefore kinematically forbidden.

It is not sufficient to make the lifetime in eq. (4.3) just longer than the present age of

the universe (which is ∼ 1017 s): The glueball decays produce photons (e.g. via hadronic

showers) which contribute with a continuous spectrum to the diffuse γ-radiation. The

γ-ray flux measured e.g. by the experiment EGRET gives constraints on the lifetime of

unstable particles in dependence of their mass density [33].15 In particular, an unstable

particle with the mass density of dark matter has to live longer than ∼ 1026 s to comply

with observations.16 Thus, it depends on the two unknown parameters M10 and λ whether

the spin-1
2

glueballs are a good dark matter candidate or not.

An interesting scenario is a setup in which λ = O(1).17 To get a viable dark matter

candidate, the 10d Planck scale has a rather limited range in this case according to eq. (4.3).

This makes it more probable that the lifetime of the glueballs is in a range that can be

probed by more sensitive γ-ray telescopes like the upcoming satellite GLAST. If this sce-

nario with λ = O(1) is realized in nature, one may be able to see a signal in the near future.

The scalar glueballs from a throat with IR scale 106 GeV decay to two gravitons after

1015 s. Note, however, that this lifetime is proportional to m−5
IR (cf. eq. (3.7)). The lifetime

will thus be somewhat larger or smaller for IR scales slightly different from 106 GeV. If

the lifetime is in the range of 1017 s (the present age of the universe) to 1012 s (the time

15See e.g. [34 – 36] for other work on decaying dark matter.
16Here, we have used that the hadronic branching ratio for decays via the coupling in eq. (3.16) is O(1).

For decays exclusively to photons or leptons, the constraints are less severe.
17The coupling in eq. (3.16) leads to a mixing between the modulino ψ and a (left-handed) neutrino ν

after electroweak symmetry breaking. Since the modulino has a large mass mτ , the seesaw mechanism

results in a light mass eigenstate. For M10 ∼ 1016 GeV (the minimal value allowed for λ ∼ 1 according

to eq. (4.3)), eq. (3.13) gives mτ ∼ 1014 GeV. Using this value and the mixing mass term for λ ∼ 1 in

the seesaw formula, the resulting neutrino mass is ∼ 0.1 eV. Interestingly, this is precisely the mass range

indicated by various experiments.
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of matter-radiation equality), the resulting decrease in the dark matter density may have

interesting consequences for structure formation. As we will explain in section 5, we expect

the fermionic glueballs to be lighter than their scalar superpartners if the supersymmetry

breaking scale is larger than the IR scale of the throat. Due to the mass difference, part

of the scalar glueballs annihilate into their superpartners after the phase transition and

the abundance of the scalar glueballs is depleted by the factor given in eq. (3.5). Inserting

the above values for NUV, mIR and TRH in eq. (3.5), we see that the scalar glueballs make

up for only 10−2 of the total dark matter abundance and the loss of mass density by the

decay of the scalar glueballs is correspondingly small. We can not exclude the possibility,

however, that either the mass splitting due to supersymmetry breaking is very small or

that the fermionic glueballs are heavier than a scalar superpartner. In these cases, the

scalar glueballs are not diluted and the loss of dark matter mass density by the decay of

the scalar glueballs is much larger. Namely, it drops by a factor of 1
2

in the former case and

by a factor of 10−2 in the latter case. It would be interesting to analyse these possibilities

and their implications for cosmology in more detail. To this end, a better understanding

of the effect of supersymmetry breaking on the glueball mass spectrum would be required.

If the lifetime of scalar glueballs is large enough, a non-negligible amount still exists

at our epoch. Their decays to the standard model again produce γ-radiation. Using

eq. (3.15) with mIR ∼ 106 GeV, the partial lifetime of scalar glueballs for decays to the

standard model is

τ ∼ 1026

(

M10

3 · 1013 GeV

)8

s. (4.4)

If the scalar glueballs (still) make up an O(1) fraction of the dark matter at our epoch, this

partial lifetime has to be larger than ∼ 1026 s to comply with the EGRET measurements.

If the current abundance of scalar glueballs is reduced (by decays to two gravitons or

by annihilation if the fermionic superpartner is lighter), the lower bound on the lifetime

becomes correspondingly weaker.

In contrast to fermionic glueballs, scalar glueballs can decay directly to two photons.

Decays via this channel in the halo of our galaxy lead to a sharp γ-line in addition to

the continuous spectrum. The γ-rays at energies around 106 GeV cannot be measured

by EGRET or GLAST. Ground-based γ-ray telescopes like HESS have the necessary en-

ergy range, but a limited sensitivity due to the cosmic-ray background. At 106 GeV, the

measured flux in the cosmic ray spectrum is (see e.g. [37])

F ∼ 10−12 (m2 sr s GeV)−1. (4.5)

To be detectable against this background, the flux from the decaying glueballs in the halo

has to be of the same order of magnitude. This flux is emitted as a sharp line at energy

∼ mIR but smeared out by the detector due to a finite energy resolution ∆E. We model

this effect by replacing the δ-function peak of the flux by a box of width ∆E. The flux is

also inversely proportional to the mass mIR and the lifetime τ of the glueballs. Assuming

that the scalar glueballs make up an O(1) fraction of the dark matter at our epoch, it is
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given by (see e.g. [35])

F ∼ 10−12

(

105 GeV

∆E

) (

106 GeV

mIR

) (

1026 s

τ

)

(m2 sr s GeV)−1. (4.6)

For mIR ∼ 106 GeV and ∆E ∼ 10−1 · E ∼ 105 GeV as quoted by the HESS collaboration,

the partial lifetime of the scalar glueballs (for decays to the standard model) has to be less

than ∼ 1026 s to be detectable against the cosmic ray background. If the partial lifetime

is somewhat larger, the γ-line may nevertheless become detectable in the near future with

an improved rejection of cosmic ray events and a better sensitivity and energy resolution.

Thus, if an O(1) fraction of the dark matter at our epoch are scalar glueballs and if

their partial lifetime is not much larger than 1026 s, two experiments may see a signal: The

contribution of glueball decays to the γ-ray spectrum below 102 GeV may be detected by

GLAST. Furthermore, the γ-line near 106 GeV may be seen by HESS. A lifetime of the

order of 1026 s follows ifM10 ∼ 1013 GeV according to eq. (4.4). Such a low 10d Planck scale

may be realized in a large-volume compactification along the lines of [38]. Note that this

scenario is incompatible with the aforementioned scenario in which λ = O(1): According

to eq. (4.3), λ has to be very small (or zero) for such a low 10d Planck scale.

We can also discuss throats with IR scales smaller than 106 GeV. As before, we take

NUV ∼ 10. According to eqs. (2.12) and (2.14), Ω is proportional to T
9/4

RHmIR. In order

still to have the abundance of dark matter with Ω ∼ 1, we have to increase the reheating

temperature as TRH ∝ m
−4/9

IR if we lower the IR scale. For example, for a throat with

IR scale 104 GeV, a reheating temperature of 1012 GeV would give the right abundance.

Since the various glueball decay rates are proportional to mIR to some positive power, the

glueballs become more stable for lower IR scales.

Let us now consider throats with mIR ∼ TRH where m · η has another peak. We take

NUV ∼ 4 in order to have NIR = O(1). According to eq. (2.14) for Tpt ∼ TRH, such a throat

again gives the right amount of dark matter for a reheating temperature ∼ 1011 GeV. The

mass of this dark matter candidate correspondingly is ∼ 1011 GeV. We expect that the

glueballs are never in thermal equilibrium for such short throats. Therefore, the heavier

superpartners do not annihilate into the lightest glueball states and the initial abundance

of scalar and spin-1
2

glueballs is equal. The scalar glueballs decay to two gravitons already

after 10−8 s, according to eq. (3.7). If the coupling in eq. (3.16) is present, the spin-1
2

glueballs decay to the standard model after

τ ∼ 1027

(

M10 · λ−1/4

5 · 1020 GeV

)8

s. (4.7)

Hadronic decays of particles in this mass range have been considered in [39] to explain events

in the cosmic ray spectrum beyond the GZK cutoff. Taking the measured flux in this energy

range, claimed by several collaborations, as an upper limit, a lifetime of at least 1027 s is

required for a particle with mass 1011 GeV. Thus, the spin-1
2

glueballs decay too quickly for

λ = O(1) since M10 cannot be larger than M4 ≃ 2 · 1018 GeV. The coupling λ can be much

smaller, though, and the spin-1
2

glueballs may be sufficiently stable for large enough M10.
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Finally, we comment on throats with higher 5-form flux numbers NIR and NUV. Since

NIR is no longer of the order 1, we have only rough estimates of the glueball decay rates

in these cases. In the following, we ignore this problem and assume that the glueballs are

sufficiently stable. The number NUV is constrained by the requirement that the Calabi-Yau

has enough negative charge to compensate for the flux. If one considers the orientifold limit

of an F-theory compactification, then this amount of negative charge is given by χ4/24,

where χ4 is the Euler number of the underlying Calabi-Yau four-fold. Examples with

χ4/24 up to 104 are known (see e.g. [40]) and we thus have NUV . 104. Let us consider

throats with maximal NUV ∼ 104. It follows from eq. (2.14) that throats at the two peaks

mIR ∼ mIR,cr and mIR ∼ TRH of m · η can account for the dark matter if the reheating

temperature was ∼ 1010 GeV. The mass of these dark matter candidates is ∼ 105 GeV

(using eq. (4.1)) and ∼ 1010 GeV, respectively. Together with the results from the first

part of this section (where we have chosen the other extreme with NIR = O(1)) this gives

the possible range of parameters in our scenario if the 5-form flux number is varied from its

minimal to its maximal value: The required reheating temperature is between 1010 GeV and

1011 GeV. Moreover, the IR scale can vary between 105 GeV and 106 GeV for a throat at the

first peak of m · η or it is between 1010 GeV and 1011 GeV for a throat at the second peak.

4.2 Many throats

The distribution of vacua in the type IIB string theory landscape favours geometries with

strongly warped regions or throats [3]. For the class of KKLT vacua [41], the statistical

distribution of multi-throat configurations was estimated in [4]. It was found that the ex-

pected number of throats with a hierarchy h larger than some h∗ for a given Calabi-Yau

orientifold is

n̄(h > h∗|K) =
K

3c log h∗
, (4.8)

where K is the number of 3-cycles of the Calabi-Yau and c is some unknown O(1) constant.

Using the relation mIR ∼ h−1N
−1/4

IR M10 and neglecting the factor N
−1/4

IR for simplicity, the

expected number of throats with IR scale in the range m̂IR < mIR < m̃IR follows from

eq. (4.8) and is given by

n̄(m̂IR < mIR < m̃IR|K) =
K/3c

log(M10/m̃IR)
− K/3c

log(M10/m̂IR)
. (4.9)

In the following, we evaluate eq. (4.9) and the resulting dark matter scenarios for

two specific cases, always assuming that c = 1. In the first case, we are optimistic about

the number of 3-cycles, choosing K = 200. This is a moderately high but not untypi-

cal value within the set of known Calabi-Yau spaces [42]. It implies a larger number of

throats, including throats with a relatively low IR scale. In this case, we focus on com-

pactifications with a moderately large volume and a correspondingly low 10d Planck scale,

M10 ∼ 1014 GeV. High values for M10 would lead to a long lifetime for the relatively light

glueballs expected in this case. The observation of their decays would then be less likely.

In the second case, we are conservative by choosing K = 60. This number of 3-cycles

is roughly the minimal value consistent with fine-tuning of the cosmological constant in the
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KKLT construction [4]. We expect only relatively short throats to be available in this case.

Large-volume compactifications are then less interesting from a cosmological perspective

since heavy glueballs will generically decay too quickly for low M10. We thus focus on

M10 ∼ 1018 GeV in the case K = 60.

Obviously, many other cases, including more extreme choices of parameters, are con-

ceivable. However, an exhaustive study of the parameter space is beyond the scope of the

present paper.

If many throats are present, we can expect that the observed dark matter (or at least

the dominant throat contribution to dark matter) will come from throats with mIR near

one of the two maxima of m · η (cf. figure 1). As before, we will simplify the analysis

by using NUV ∼ 10 for long throats (mIR ∼ 106 GeV) and NUV ∼ 4 for short throats

(mIR ∼ 1011 GeV). If dark matter is indeed due to such throats, the reheating temperature

has to be TRH ∼ 1011 GeV. Note that, in general, the situation might be more complicated:

For example, a throat with an IR scale far away from the maxima but with very large

NUV (recall that NUV is fairly arbitrary if we do not insist on NIR ∼ 1) may provide the

dominant contribution to dark matter (cf. eqs. (2.12) and (2.14)).

In the first example with M10 ∼ 1014 GeV, the lifetime of glueballs from a throat

with mIR ∼ 1011 GeV is much too short to be a good dark matter candidate (see below).

Therefore, we focus on the maximum of m · η near mIR ∼ 106 GeV. The expected number

of throats with this IR scale is

n̄
(

5 · 105 GeV < mIR < 5 · 106 GeV
)

≃ 0.5. (4.10)

Thus, a significant fraction of the vacua has a throat which yields the right amount of dark

matter for TRH ∼ 1011 GeV.18 Certain partial lifetimes of the glueballs have been discussed

in section 4.1. In addition, we now expect

n̄
(

mIR . 105 GeV
)

≃ 3.5 (4.11)

throats with IR scales smaller than 106 GeV which provide another decay channel for the

glueballs. These throats can have a large number G of degrees of freedom. Therefore,

we have to check whether the lifetime of the dark matter glueballs is still larger than the

current age of the universe. If we denote the 5-form flux number at the UV end of the ith

throat by Ni, we have

G =
∑

i

N2
i , (4.12)

where the sum runs over all throats with IR scales smaller than 106 GeV. Using eq. (3.15)

with N2 = G, the partial lifetime of the glueballs for decays to these throats is

G−1 1032 s. (4.13)

18In deriving the energy transfer rates in eqs. (2.1) and (2.2), we have assumed that the reheating

temperature is smaller than the compactification scale, i.e. TRH < L−1. Using the relation M4 ∼ L3M4

10,

the compactification scale is L−1 ∼ 1012 GeV for a 10d Planck scale M10 ∼ 1014 GeV. Thus, the assumption

is still fulfilled for such a low 10d Planck scale and a reheating temperature TRH ∼ 1011 GeV.
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According to the discussion at the end of section 4.1, we expect G to be somewhere in

range of 102 to 108. Thus, even for maximal G this partial lifetime is much larger than the

current age of the universe and the glueballs are still a good dark matter candidate.

There are also throats with IR scales larger than 106 GeV. Since throats with IR

scales larger than the reheating temperature are not heated for kinematic reasons, we are

interested in throats between 107 GeV and 1011 GeV. Their average number is

n̄
(

107 GeV . mIR . 1011 GeV
)

≃ 8.6. (4.14)

Glueballs from these throats have shorter lifetimes than the dark matter glueballs. The

abundance of particles which decay to the standard model with a lifetime between 10−2 s

and 1012 s is severely constrained by nucleosynthesis [43, 34, 44]. Therefore, we have to

check whether the decaying glueballs fulfill these bounds.19

We restrict ourselves to decays of scalar glueballs. The discussion can then be easily

extended to include the fermionic glueballs. Since the fermionic glueballs decay to the

standard model via the operator in eq. (3.16), nucleosynthesis may give a bound on the

coupling strength λ. Scalar glueballs have three important decay channels: They decay to

two gravitons, to throats with lower IR scales and to the standard model. The total decay

rate is the sum of the three corresponding decay rates. For a throat at 1011 GeV, the total

decay rate is dominated by decays to throats with lower IR scales. Denoting by G the com-

bined number of degrees of freedom of throats with mIR < 1011 GeV and using eq. (3.10),20

the glueballs from such a throat decay already after G−110−7 s. Since this lifetime is shorter

than 10−2 s, these glueballs do not affect nucleosynthesis. Similarly, glueballs from a throat

at 1010 GeV do not live long enough to be relevant for nucleosynthesis.

The lifetime becomes larger for throats with lower IR scales. We consider a throat at

107 GeV. The total decay rate is then dominated by decays to two gravitons since G . 108.

Using eq. (3.15), the corresponding lifetime is approximately 1010 s. Let us denote the mass

density over entropy density of the fraction of glueballs that have decayed to the standard

model sector by m · ηdec. Successful nucleosynthesis requires that [44]

m · ηdec . 10−14 GeV (4.15)

for particles that decay 1010 s after reheating.21 To estimate m · ηdec, recall that m · η has

maxima at IR scales mIR,cr ∼ 106 GeV and TRH ∼ 1011 GeV (see figure 1). Calculating

m · η at these IR scales from eq. (2.13), we have

m · η . 10−9 GeV. (4.16)

19For lifetimes larger than 1012 s, bounds from the diffuse γ-radiation are important [33]. These are not

relevant in this example.
20In deriving the decay rate in eq. (3.15), we have assumed that the mass mτ of the modulus which

mediates the decay is larger than the mass mIR of the decaying glueball. Using eq. (3.13), we have mτ ∼

1010 GeV for M10 ∼ 1014 GeV. For a throat with mIR ∼ 1011 GeV, we therefore have to use the unsuppressed

decay rate in eq. (3.10).
21The bounds on m · ηdec were derived for particles with masses in the range of 102 GeV to 104 GeV.

At 1010 s, the bound is approximately independent of the particle mass. We therefore believe that it is a

reasonable approximation to extrapolate this bound to particles of mass 107 GeV.
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Using this upper value and taking the branching ratio for decays to the standard model

sector into account, we get m·ηdec . 10−19 GeV for the fraction of scalar glueballs that may

have affected nucleosynthesis. Thus, the bound in eq. (4.15) is clearly fulfilled. Similarly,

one can check that scalar glueballs from throats at 108 GeV and 109 GeV fulfill the bounds

from nucleosynthesis. We conclude that glueball decays from throats between 107 GeV and

1011 GeV do not destroy nucleosynthesis.

In the second example, it is unlikely to find throats with mIR ∼ 106 GeV. Thus, we

focus on the maximum of m · η near mIR ∼ 1011 GeV. According to eq. (4.9), the expected

number of throats with IR scale between 1010 GeV and 1011 GeV is

n̄
(

1010 GeV . mIR . 1011 GeV
)

≃ 0.3 . (4.17)

Thus, a significant fraction of the vacua has a throat in this range of IR scales. A reheating

temperature of the order of 1011 GeV would give the right amount of dark matter not only

for a throat at 1011 GeV but also for a throat at 1010 GeV: As one can see from figure 1

(the thin curve), we expect the function m · η to decrease rather slowly with the IR scale

near the peak at mIR ∼ TRH. In the worst case, m · η is proportional to mIR. From the

discussion in section 2.2, we also know that m · η is proportional to T 3
RH. Thus, in order

to compensate the decrease in m · η if mIR is lowered by one order of magnitude, TRH only

has to be raised by an O(1) factor.

Certain partial lifetimes of the glueballs from such a throat have been discussed in

section 4.1. In addition, there may be throats with lower IR scales which provide new

decay channels for the glueballs. Their expected number is

n̄
(

mIR . 109 GeV
)

≃ 1.1. (4.18)

We denote the number of degrees of freedom of this sector by G. As before, we have

to check that the dark matter glueballs do not decay too quickly to this sector. Using

eq. (3.15), the partial lifetime for this decay channel is

G−1 1029 s to G−1 1020 s (4.19)

for glueball masses in the range of 1010 GeV to 1011 GeV. For large G, this lifetime is

larger than the current age of the universe only for a throat around 1010 GeV. If G is small

or if there is no throat with lower IR scale, also a throat around 1011 GeV would give a

sufficiently stable dark matter candidate.

5. Further issues related to supersymmetry breaking

Up to now, we have neglected decays mediated by the Kähler moduli. This is justified if

the Kähler moduli are sequestered from the throat sectors. The latter assumption follows

from the interpretation of a Calabi-Yau orientifold with a long throat as supersymmetric

Randall-Sundrum model in which the Kähler moduli are localized on the UV brane [45].

The sequestering assumption in this 5d framework [46] has been widely accepted and
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has also been used in the context of type-IIB models with strongly warped regions (see

e.g. [48, 47] as well as the detailed discussion of [49] and refs. therein).

Let us restrict ourselves to the universal Kähler modulus. We denote the corresponding

chiral superfield by T and a chiral glueball superfield from the throat sector by X. The

Lagrangian can be written in standard N = 1 supergravity form

L =

∫

d4θ ϕϕ̄ Ω +

(
∫

d2θ ϕ3 W + h.c.

)

, (5.1)

where ϕ = 1 + θ2Fϕ is the chiral compensator, Ω is the kinetic function and W is the

superpotential. The sequestering assumption [46] states that

Ω(X, X̄, T, T̄ ) = Ω(X, X̄) + Ω(T, T̄ )

W (X,T ) = W (X) + W (T ).
(5.2)

In particular, terms mixing the superfields T and X appear neither in the kinetic part nor

in the superpotential. Thus, since the universal Kähler modulus does not mix with the

glueballs, it cannot mediate their decays to other sectors. Even if the sequestered form

of eq. (5.2) turns out to be violated, we expect that the cross-couplings are much more

suppressed than the mixing vertex of eq. (3.8) between glueball and dilaton. The effect of

the Kähler moduli in mediating glueball decays is then still negligible.

We have also not yet considered decays mediated by the gravitino. It may turn out

that the fermionic glueball mixes with the gravitino which thus mediates its decay to other

sectors. An additional process is the decay of the heavier superpartner to the lightest

glueball by the emission of a gravitino. This follows from the process shown in figure 2

by replacing the virtual spin-2 glueball by a virtual spin-3
2

glueball, the outgoing graviton

by a gravitino and one of the bosonic glueballs by a fermionic glueball. If the emitted

gravitino is heavier than the decaying glueball, the gravitino is off-shell and must in turn

decay to the standard model or another throat. It is not immediately clear, how strongly

the propagator of the gravitino suppresses the corresponding decay rate, i.e. with which

power the gravitino mass enters. In addition, the gravitino can be considerably lighter

than the dilaton and complex-structure moduli. It may therefore turn out that we get a

strong bound on the gravitino mass in our scenario. This would make it more probable

that the decaying glueballs lead to a detectable signal. This is an interesting topic for

future investigations.

Finally, let us consider the limit of light gravitinos or, equivalently, supersymmetry

broken at a low scale. If the gravitino is lighter than the glueballs, the spin-1
2

glueballs

may decay to a graviton and a gravitino as discussed at the end of section 3.1. The scalar

glueballs decay to two gravitons with the same rate. We have seen in section 4.1 that the

scalar glueballs with mass 106 GeV have a lifetime shorter than the current age of the uni-

verse. This lifetime would now also apply to the fermionic glueballs. But the partial lifetime

for this decay channel is proportional to m−5
IR according to eq. (3.7). Thus, this problem

does not occur if the infrared scale is somewhat lower than our ‘optimal’ value of 106 GeV.

In this case, throat dark matter is still possible even if the SUSY breaking scale is low.
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Many of the decay processes discussed in this and previous sections depend on the

spectrum of the lightest glueballs from the throat sector. This spectrum depends crucially

on the pattern of supersymmetry breaking in the throat, to which we now turn. Motivated

by sequestering, we assume that supersymmetry breaking is communicated to the lightest

glueball multiplet X only by the F-term Fϕ of the chiral compensator.22 The relevant part

of the effective Lagrangian eq. (5.2) is

L ⊃
∫

d4θ ϕϕ̄XX̄ +

(
∫

d2θ mX2ϕ3 + h.c.

)

. (5.3)

If supersymmetry is broken, the F -term of the chiral compensator gets a vev 〈Fϕ〉. Since

we can expect this vev to be of the same order of magnitude as the gravitino mass, the

limit of a light gravitino corresponds to 〈Fϕ〉 ≪ m. We can expand X in components and

split the lowest component of X into real and imaginary parts. Inserting this expression

in eq. (5.3) and diagonalizing the resulting mass matrix for the real and imaginary part,

one finds two scalar eigenstates with masses

m2
1,2 = 4m2 ± 2m |〈Fϕ〉|. (5.4)

Moreover, the mass of the fermion is 2m and receives no contribution from 〈Fϕ〉. Therefore,

one scalar glueball is lighter than its former spin-1
2

superpartner and the mass splitting is

|〈Fϕ〉|/2. Depending on the precise relation between 〈Fϕ〉 and the gravitino mass, the spin-
1
2

glueball may or may not decay to the lighter scalar glueball by emission of a gravitino.

If this decay is kinematically not allowed, the spin-1
2

glueball may still decay by mediation

of a gravitino to standard model particles and the lighter scalar glueball. The gravitino

propagator gives no suppression of the decay rate in this case and the decay rate is given

by eq. (3.10). For a throat with mIR ∼ 106 GeV and NIR ∼ O(1), the partial lifetime of

the spin-1
2

glueballs for this decay channel is

τ ∼ 1015 s. (5.5)

Again, this is shorter than the current age of the universe. Since decays of this kind are

constrained by diffuse γ-ray measurements, a partial lifetime larger than ∼ 1026 s is actually

required. Since the partial lifetime is again proportional to m−5
IR (cf. eq. (3.10)), also this

problem can be avoided with a lower IR scale. As we have explained in section 4.1, this

requires a higher reheating temperature.

Let us finally note that eq. (5.4) is obviously not applicable if 〈Fϕ〉 ≫ m. In this case,

we can analyse the situation from the perspective of a chiral superfield with vanishing

mass, i.e. we consider the limit m → 0. The theory then possesses a chiral symmetry

which ensures the masslessness of the fermion even in the presence of SUSY breaking.

Thus, in analogy to the matter superfields of the minimal supersymmetric standard model,

we expect that the scalar glueballs will be heavier than the fermions if supersymmetry

breaking in the throat is a large effect relative to the supersymmetric mass term.

22Actually, the situation might be more complicated since the lightest glueball multiplet couples strongly

to heavier glueballs, which are themselves affected by supersymmetry breaking and which might therefore

influence the mass-splitting of the lightest multiplet in a non-negligible way. We intend to return to this

point in future investigations and view the present calculation only as a reasonable first guess.
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6. Summary

Strongly warped regions or throats are a common feature of the type IIB string theory

landscape. KK modes whose wavefunctions are localized in a throat have redshifted masses,

allowing for their production after reheating in the standard model sector, even if the

reheating temperature is not very high. In addition, these KK modes are only very weakly

coupled to the rest of the compact manifold, potentially resulting in a very long lifetime.

These properties make the KK modes an interesting dark matter candidate.

We have considered a setup in which the standard model lives in the unwarped part of

a compact manifold, which in addition has a certain number of throats. To be conservative,

we have assumed that reheating only takes place in the standard model sector. Even under

this minimal assumption, the throats are heated up by energy transfer from the hot stan-

dard model plasma. In section 2.1, we have determined the energy density deposited in a

throat, using our result for the corresponding energy transfer rate from a previous paper [7].

Throats have a dual description as a strongly coupled gauge theory with a large num-

ber of colours. From this gauge theory point of view, the energy density in a throat is

initially in the form of gauge theory states with energy of the order of the reheating tem-

perature. These states subsequently settle into a certain number of lighter glueballs with

some distribution of kinetic energies. The knowledge of this distribution is important since

it determines whether the glueballs thermalize and whether (and for how long) the energy

density scales like radiation or like matter. Since we are at present unable to determine

this distribution of kinetic energies, we have considered two extremal cases in section 2.2.

In the first case, the initial gauge theory state settles into a large number of glueballs with

kinetic energies of the order of their mass. In the second case, the decay products of the

initial state are an O(1) number of glueballs which accordingly have kinetic energies of the

order of the reheating temperature.

It turns out that the gauge theory thermalizes in both extremal cases if the energy

density in this sector is above the critical energy density for deconfinement. The energy

density thus scales like radiation with the expansion of the universe until the confinement

phase transition takes place. Afterwards, it scales like matter. Taking this scaling into

account, we have determined the contribution of the throat sector to the total energy

density of the universe at our epoch. We have also determined this contribution for the

case that the initial energy density in the throat sector is below the critical energy density

and found that it differs considerably between the two extremal cases. We expect the true

behaviour in this region of parameter space to be in between the two extremal cases.

After the confinement phase transition, different types of glueballs with mass of the

order of the confinement scale mIR are formed. Similarly, if the gauge theory does not

thermalize, the initial gauge theory states created at reheating settle into a certain number

of light glueballs. As we have shown in section 3.1, these glueballs quickly decay to a

lightest state and its superpartner. On the basis of a number of papers devoted to the

spectrum of the KS gauge theory [15 – 23], we expect these lightest states to be a scalar

glueball and its spin-1
2

superpartner. The glueballs couple (very weakly) to the standard

model and other throats and can thus decay to these sectors. In section 3.2, we have
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applied our results for this decay [7] to scalar glueballs. A crucial difference with respect to

our previous analysis is the fact that the bulk fields which mediate the decay are massive

in a flux background. Depending on the mass of the decaying glueballs, this can lead to

a significant suppression of the corresponding decay rate. In addition, scalar glueballs can

decay to two gravitons. We have determined the corresponding rate in section 3.1.

Similarly, spin-1
2

glueballs can in principle decay to a graviton and a gravitino. To

get a stable dark matter candidate, we are mainly interested in setups where such decays

are kinematically forbidden due to a heavy gravitino. This requires that the supersym-

metry breaking scale is larger than the mass of the glueball. It may also mean that the

superpartners of standard model particles are heavier than the glueballs. If R-parity is

conserved, most decay channels of spin-1
2

glueballs to the standard model sector involve

such a superpartner and are therefore kinematically forbidden. In section 3.2, we have

identified an operator which does not involve a superpartner and which would allow the

decay of spin-1
2

glueballs to a Higgs and a lepton. If present, this operator would give

the dominant decay channel even for maximally broken R-parity. Using the corresponding

vertex, we have determined the decay rate of spin-1
2

glueballs to the standard model.

In figure 1, we have plotted the contribution of a throat sector to the total energy

density of the universe for fixed reheating temperature TRH and as a function of the IR

scale mIR. We expect this function to have two maxima at IR scales mIR,cr and TRH. For

a throat with IR scale mIR,cr, the dual gauge theory thermalizes precisely to the phase

transition temperature and therefore the energy density scales like matter immediately

after reheating. KK modes in throats with IR scale TRH, on the other hand, are so massive

that they become nonrelativistic immediately after reheating and the energy density again

scales like matter afterwards.

One of the main underlying ideas of our analysis is the generic presence of throats

in the type IIB landscape. It is then probable to have throats with these optimal IR

scales in a given compact manifold. For simplicity, we have first discussed a scenario

with a single throat in section 4.1. We have found that, in many cases, KK modes in

throats with IR scale TRH have a decay rate which is too high for them to be a good dark

matter candidate. However, if the gravitino is very heavy (high-scale SUSY breaking) and

certain operators connecting the standard model and the moduli sector are suppressed, the

fermionic glueballs may nevertheless survive and play the role of dark matter.

The more promising case is that of throats with IR scale mIR,cr, to which we now

turn. In this case, it follows immediately from our results of section 2.2 that a reheating

temperature of 1010 GeV to 1011 GeV leads to the right amount of glueballs to account for

the observed dark matter. The critical IR scale mIR,cr is a function of TRH. After having

fixed TRH, we find a mass for our dark matter candidate which is between 105 GeV and

106 GeV. In section 4.2, we have used results from ref. [4] on the distribution of throats in

the landscape to consider a scenario with a large number of throats. We have found that

there are setups in which the probability of having a throat with the required IR scale is

large. The only free parameter which has then to be fixed is the reheating temperature.

Our dark matter scenario may lead to some interesting observable signatures. The

dark matter glueballs decay to the standard model with a very low, but non-negligible
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rate. The decays produce photons to which experiments like GLAST or HESS may be

sensitive. It turns out that the decay rates depend on two parameters: The 10d Planck

mass M10 enters via the flux stabilized mass of fields which mediate the decay. Moreover,

the decay rate of spin-1
2

glueballs depends on the coupling strength λ of the aforementioned

operator which allows their decay to a lepton and a Higgs. In section 4.1, we have identified

two interesting scenarios:

If λ is of the order 1, M10 has to be very large in order to get a sufficiently stable

dark matter candidate. Namely, for a lower 10d Planck scale, the spin-1
2

glueballs decay

to the standard model with a rate which is in conflict with measurements of the diffuse

γ-radiation. On the other hand, the 10d Planck scale cannot be larger than the 4d Planck

scale. This makes it more probable that the lifetime of spin-1
2

glueballs is in a range that

can be probed with new, more sensitive experiments like GLAST. If the scenario with

λ = O(1) is realized in nature, one can hope to detect a signal from the decaying glueballs

in the near future.

If λ is much smaller than 1, a lower M10 still leads to sufficiently stable spin-1
2

glueballs.

For a low 10d Planck scale, also the decay of scalar glueballs can become relevant for

detection. In contrast to fermionic glueballs, scalar glueballs can decay directly to two

photons. This decay channel leads to a sharp γ-line at an energy of 105 GeV to 106 GeV

which could be detected with experiments like HESS. In addition, the scalar glueball decays

also produce a continuous γ-ray spectrum to which e.g. GLAST may again be sensitive.

If the scalar glueballs make up an O(1) fraction of the dark matter at our epoch, a 10d

Planck scale of the order of 1013 GeV would allow for a detection of both signals in the

near future. Such a 10d Planck scale corresponds to a compactification radius of the order

of just 50 lstring, which is not extremely large.

Another interesting effect is the decay of the scalar glueballs into two gravitons which

may happen before our epoch. Since we consider a setup in which the corresponding decay

of the spin-1
2

glueballs into a graviton and a gravitino is kinematically forbidden, we still

have a sufficiently stable dark matter candidate. For reasons that we have explained in

section 3.1, we expect the scalar glueballs to have a lower abundance than the spin-1
2

glueballs. The total dark matter abundance would then only change by a small factor

when the scalar glueballs decay. It is possible, however, that the scalar glueballs have

a comparable or even higher abundance than the spin-1
2

glueballs. The change in the

dark matter abundance could then be enormous. It would be interesting to consider the

implications of this scenario for cosmology.

In a setup with a large number of throats one also expects throats with IR scales larger

than 105 GeV to 106 GeV (the IR scale of the throat which provides the dark matter). The

glueballs from these throats have shorter lifetimes and may decay already during nucle-

osynthesis. Therefore, successful nucleosynthesis may impose further constraints on our

scenario. For a particular example, we have checked in section 4.2 that the glueball decays

do not affect nucleosynthesis due to a low branching ratio to the standard model. Exam-

ples are conceivable, however, in which bounds from nucleosynthesis are only marginally

fulfilled. It would then be interesting to look for traces of glueball decays in the abundances

of light elements. Unfortunately, we are at present unable to determine the contribution of
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throats with the aforementioned range of IR scales to the total energy density of the uni-

verse with sufficient precision. Progress in this direction requires a detailed understanding

of hadronization in a strongly coupled gauge theory, which we therefore view as a further

interesting topic for future research.
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